Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Sci Rep ; 14(1): 7690, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565870

RESUMO

Tunicates are evolutionary model organisms bridging the gap between vertebrates and invertebrates. A genomic sequence in Ciona intestinalis (CiOX) shows high similarity to vertebrate orexin receptors and protostome allatotropin receptors (ATR). Here, molecular phylogeny suggested that CiOX is divergent from ATRs and human orexin receptors (hOX1/2). However, CiOX appears closer to hOX1/2 than to ATR both in terms of sequence percent identity and in its modelled binding cavity, as suggested by molecular modelling. CiOX was heterologously expressed in a recombinant HEK293 cell system. Human orexins weakly but concentration-dependently activated its Gq signalling (Ca2+ elevation), and the responses were inhibited by the non-selective orexin receptor antagonists TCS 1102 and almorexant, but only weakly by the OX1-selective antagonist SB-334867. Furthermore, the 5-/6-carboxytetramethylrhodamine (TAMRA)-labelled human orexin-A was able to bind to CiOX. Database mining was used to predict a potential endogenous C. intestinalis orexin peptide (Ci-orexin-A). Ci-orexin-A was able to displace TAMRA-orexin-A, but not to induce any calcium response at the CiOX. Consequently, we suggested that the orexin signalling system is conserved in Ciona intestinalis, although the relevant peptide-receptor interaction was not fully elucidated.


Assuntos
Ciona intestinalis , Animais , Humanos , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Células HEK293 , Transdução de Sinais , Vertebrados/metabolismo , Proteínas de Transporte/metabolismo
2.
Nat Commun ; 15(1): 3025, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589372

RESUMO

Tissue-specific gene expression is fundamental in development and evolution, and is mediated by transcription factors and by the cis-regulatory regions (enhancers) that they control. Transcription factors and their respective tissue-specific enhancers are essential components of gene regulatory networks responsible for the development of tissues and organs. Although numerous transcription factors have been characterized from different organisms, the knowledge of the enhancers responsible for their tissue-specific expression remains fragmentary. Here we use Ciona to study the enhancers associated with ten transcription factors expressed in the notochord, an evolutionary hallmark of the chordate phylum. Our results illustrate how two evolutionarily conserved transcription factors, Brachyury and Foxa2, coordinate the deployment of other notochord transcription factors. The results of these detailed cis-regulatory analyses delineate a high-resolution view of the essential notochord gene regulatory network of Ciona, and provide a reference for studies of transcription factors, enhancers, and their roles in development, disease, and evolution.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona/genética , Redes Reguladoras de Genes , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Notocorda/metabolismo , Proteínas Fetais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
3.
Sci Rep ; 14(1): 6277, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491056

RESUMO

The cholecystokinin (CCK)/gastrin family peptides are involved in regulation of feeding and digestion in vertebrates. In the ascidian Ciona intestinalis type A (Ciona robusta), cionin, a CCK/gastrin family peptide, has been identified. Cionin is expressed exclusively in the central nervous system (CNS). In contrast, cionin receptor expression has been detected in the CNS, digestive tract, and ovary. Although cionin has been reported to be involved in ovulation, its physiological function in the CNS remains to be investigated. To elucidate its neural function, in the present study, we analyzed the expression of cionin and cionin receptors in the CNS. Cionin was expressed mainly in neurons residing in the anterior region of the cerebral ganglion. In contrast, the gene expressin of the cionin receptor gene CioR1, was detected in the middle part of the cerebral ganglion and showed a similar expression pattern to that of VACHT, a cholinergic neuron marker gene. Moreover, CioR1 was found to be expressed in cholinergic neurons. Consequently, these results suggest that cionin interacts with cholinergic neurons as a neurotransmitter or neuromodulator via CioR1. This study provides insights into a biological role of a CCK/gastrin family peptide in the CNS of ascidians.


Assuntos
Colecistocinina , Ciona intestinalis , Neuropeptídeos , Animais , Feminino , Colecistocinina/genética , Colecistocinina/metabolismo , Gastrinas , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Sequência de Aminoácidos , Sistema Nervoso Central
4.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451444

RESUMO

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Assuntos
Ciona intestinalis , Vanádio , Animais , Vanádio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiologia , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Meios de Cultura/química , RNA Ribossômico 16S/genética
5.
Dev Biol ; 510: 31-39, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490564

RESUMO

CRISPR/Cas9 became a powerful tool for genetic engineering and in vivo knockout also in the invertebrate chordate Ciona intestinalis. Ciona (ascidians, tunicates) is an important model organism because it shares developmental features with the vertebrates, considered the sister group of tunicates, and offers outstanding experimental advantages: a compact genome and an invariant developmental cell lineage that, combined with electroporation mediated transgenesis allows for precise and cell type specific targeting in vivo. A high polymorphism and the mosaic expression of electroporated constructs, however, often hamper the efficient CRISPR knockout, and an optimization in Ciona is desirable. Furthermore, seasonality and artificial maintenance settings can profit from in vitro approaches that would save on animals. Here we present improvements for the CRISPR/Cas9 protocol in silico, in vitro and in vivo. Firstly, in designing sgRNAs, prior sequencing of target genomic regions from experimental animals and alignment with reference genomes of C. robusta and C. intestinalis render a correction possible of subspecies polymorphisms. Ideally, the screening for efficient and non-polymorphic sgRNAs will generate a database compatible for worldwide Ciona populations. Secondly, we challenged in vitro assays for sgRNA validation towards reduced in vivo experimentation and report their suitability but also overefficiency concerning mismatch tolerance. Thirdly, when comparing Cas9 with Cas9:Geminin, thought to synchronize editing and homology-direct repair, we could indeed increase the in vivo efficiency and notably the access to an early expressed gene. Finally, for in vivo CRISPR, genotyping by next generation sequencing (NGS) ex vivo streamlined the definition of efficient single guides. Double CRISPR then generates large deletions and reliable phenotypic excision effects. Overall, while these improvements render CRISPR more efficient in Ciona, they are useful when newly establishing the technique and very transferable to CRISPR in other organisms.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Ciona/genética , Eletroporação , Edição de Genes/métodos
6.
Sci Rep ; 14(1): 5729, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459045

RESUMO

Apoptosis is a regulated cell death ubiquitous in animals defined by morphological features depending on caspases. Two regulation pathways are described, currently named the intrinsic and the extrinsic apoptosis. While intrinsic apoptosis is well studied and considered ancestral among metazoans, extrinsic apoptosis is poorly studied outside mammals. Here, we address extrinsic apoptosis in the urochordates Ciona, belonging to the sister group of vertebrates. During metamorphosis, Ciona larvae undergo a tail regression depending on tissue contraction, migration and apoptosis. Apoptosis begin at the tail tip and propagates towards the trunk as a polarized wave. We identified Ci-caspase 8/10 by phylogenetic analysis as homolog to vertebrate caspases 8 and 10 that are the specific initiator of extrinsic apoptosis. We detected Ci-caspase 8/10 expression in Ciona larvae, especially at the tail tip. We showed that chemical inhibition of Ci-caspase 8/10 leads to a delay of tail regression, and Ci-caspase 8/10 loss of function induced an incomplete tail regression. The specificity between apoptotic pathways and initiator caspase suggests that extrinsic apoptosis regulates cell death during the tail regression. Our study presents rare in vivo work on extrinsic apoptosis outside mammals, and contribute to the discussion on its evolutionary history in animals.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Filogenia , Apoptose/genética , Caspases/genética , Caspases/metabolismo , Mamíferos/metabolismo
7.
Nat Commun ; 15(1): 1408, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360718

RESUMO

The Ciona intestinalis voltage-sensing phosphatase (Ci-VSP) is a membrane protein containing a voltage-sensing domain (VSD) that is homologous to VSDs from voltage-gated ion channels responsible for cellular excitability. Previously published crystal structures of Ci-VSD in putative resting and active conformations suggested a helical-screw voltage sensing mechanism in which the S4 helix translocates and rotates to enable exchange of salt-bridge partners, but the microscopic details of the transition between the resting and active conformations remained unknown. Here, by combining extensive molecular dynamics simulations with a recently developed computational framework based on dynamical operators, we elucidate the microscopic mechanism of the resting-active transition at physiological membrane potential. Sparse regression reveals a small set of coordinates that distinguish intermediates that are hidden from electrophysiological measurements. The intermediates arise from a noncanonical helical-screw mechanism in which translocation, rotation, and side-chain movement of the S4 helix are only loosely coupled. These results provide insights into existing experimental and computational findings on voltage sensing and suggest ways of further probing its mechanism.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Potenciais da Membrana , Proteínas de Membrana , Simulação de Dinâmica Molecular
8.
Biomolecules ; 13(11)2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-38002275

RESUMO

Flagellar motility in sperm is activated and regulated by factors related to the eggs at fertilization. In the ascidian Ciona intestinalis, a sulfated steroid called the SAAF (sperm activating and attracting factor) induces both sperm motility activation and chemotaxis. Cyclic AMP (cAMP) is one of the most important intracellular factors in the sperm signaling pathway. Adenylyl cyclase (AC) is the key enzyme that synthesizes cAMP at the onset of the signaling pathway in all cellular functions. We previously reported that both transmembrane AC (tmAC) and soluble AC (sAC) play important roles in sperm motility in Ciona. The tmAC plays a major role in the SAAF-induced activation of sperm motility. On the other hand, sAC is involved in the regulation of flagellar beat frequency and the Ca2+-dependent chemotactic movement of sperm. In this study, we focused on the role of sAC in the regulation of flagellar motility in Ciona sperm chemotaxis. The immunochemical analysis revealed that several isoforms of sAC protein were expressed in Ciona sperm, as reported in mammals and sea urchins. We demonstrated that sAC inhibition caused strong and transient asymmetrization during the chemotactic turn, and then sperm failed to turn toward the SAAF. In addition, real-time Ca2+ imaging in sperm flagella revealed that sAC inhibition induced an excessive and prolonged Ca2+ influx to flagella. These results indicate that sAC plays a key role in sperm chemotaxis by regulating the clearance of [Ca2+]i and by modulating Ca2+-dependent flagellar waveform conversion.


Assuntos
Adenilil Ciclases , Ciona intestinalis , Animais , Masculino , Adenilil Ciclases/metabolismo , Motilidade dos Espermatozoides , Sêmen/metabolismo , Espermatozoides/metabolismo , AMP Cíclico/metabolismo , Ciona intestinalis/metabolismo , Mamíferos/metabolismo
9.
Cell Tissue Res ; 394(3): 423-430, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878073

RESUMO

Bilateria share sequential steps in their digestive systems, and digestion occurs in a pre-absorption step within a chamber-like structure. Previous studies on the ascidian Ciona intestinalis type A, an evolutionary research model of vertebrate organs, revealed that Ciona homologs of pancreas-related exocrine digestive enzymes (XDEs) are exclusively expressed in the chamber-like bulging stomach. In the development of the gastrointestinal tract, genes for the pancreas-related transcription factors, namely Ptf1a, Nr5a2, and Pdx, are expressed near the stomach. Recent organ/tissue RNA-seq studies on two Ciona species reported that transcripts of the XDE homologs exist in the intestinal regions, as well as in the stomach. In the present study, we investigated the spatial gene expression of XDE homologs in the gastrointestinal region of the C. intestinalis type A. Whole-mount in situ hybridization using adult and juvenile specimens revealed apparent expression signals of XDE homologs in a small number of gastrointestinal epithelial cells. Furthermore, two pancreas-related transcription factor genes, Nr5a2 and Pdx, exhibited multi-regional expression along the Ciona juvenile intestines. These results imply that ascidians may form multiple digestive regions corresponding to the vertebrate pancreas.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Vertebrados/genética , Pâncreas , Trato Gastrointestinal/metabolismo , Intestinos
10.
Proc Natl Acad Sci U S A ; 120(43): e2309989120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856545

RESUMO

Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.


Assuntos
Ciona intestinalis , Músculos , Peptídeo Hidrolases , Animais , Proteínas de Transporte , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Músculos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Talidomida/efeitos adversos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Larva/genética , Larva/metabolismo
11.
J Fish Biol ; 103(3): 727-730, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37148434

RESUMO

The effects of lipopolysaccharide (LPS) on Mif (macrophage migration inhibitory factor) gene expression in the pharynx (haemapoetic tissue) of Ciona robusta were investigated using quantitative reverse-transcription PCR (qRT-PCR) and in situ hybridisation (ISH). To verify the induction of an inflammatory response in the pharynx, a qRT-PCR analysis was performed to evaluate the change in the expression of proinflammatory marker genes such as Mbl, Ptx-like, Tnf-α and Nf-kb, which were shown to be upregulated 1 h post LPS challenge. The change in the expression of the two Mif paralogs in the pharynx was assessed before and after stimulation, and qRT-PCR and ISH results showed that, although Mif2 and Mif2 were expressed in clusters of haemocytes in pharynx vessels, only Mif1 expression increased after LPS stimulation. This indicates that the Mif genes are differently regulated and respond to different ambient inputs that need further analysis.


Assuntos
Ciona intestinalis , Fatores Inibidores da Migração de Macrófagos , Animais , Lipopolissacarídeos/farmacologia , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Faringe/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo
12.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190059

RESUMO

Serotonin (5-hydroxytryptamine (5-HT)) is a biogenic monoamine with pleiotropic functions. It exerts its roles by binding to specific 5-HT receptors (5HTRs) classified into different families and subtypes. Homologs of 5HTRs are widely present in invertebrates, but their expression and pharmacological characterization have been scarcely investigated. In particular, 5-HT has been localized in many tunicate species but only a few studies have investigated its physiological functions. Tunicates, including ascidians, are the sister group of vertebrates, and data about the role of 5-HTRs in these organisms are thus important for understanding 5-HT evolution among animals. In the present study, we identified and described 5HTRs in the ascidian Ciona intestinalis. During development, they showed broad expression patterns that appeared consistent with those reported in other species. Then, we investigated 5-HT roles in ascidian embryogenesis exposing C. intestinalis embryos to WAY-100635, an antagonist of the 5HT1A receptor, and explored the affected pathways in neural development and melanogenesis. Our results contribute to unraveling the multifaceted functions of 5-HT, revealing its involvement in sensory cell differentiation in ascidians.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/metabolismo , Serotonina/metabolismo , Vertebrados , Invertebrados , Receptores de Serotonina
13.
Gen Comp Endocrinol ; 337: 114262, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925021

RESUMO

Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.


Assuntos
Ciona intestinalis , Neuropeptídeos , Animais , Feminino , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Vertebrados/genética , Receptores de Neuropeptídeos/metabolismo , Taquicininas/metabolismo
14.
Biol Res ; 56(1): 10, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899423

RESUMO

BACKGROUND: The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS: In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of notochord cells is vigorous in the apical membrane. CONCLUSIONS: We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.


Assuntos
Ciona intestinalis , Animais , Humanos , Ciona intestinalis/metabolismo , Notocorda/metabolismo , Fosforilação , Desenvolvimento Embrionário , Morfogênese
15.
Open Biol ; 13(3): 220367, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36918025

RESUMO

Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in Ciona larvae. We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for Ciona notochord lumen formation.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Notocorda/metabolismo , Membrana Celular , Citoplasma
16.
Methods Mol Biol ; 2637: 375-388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773161

RESUMO

The ascidian Ciona intestinalis type A (or Ciona robusta) is an important organism for elucidating the mechanisms that make the chordate body plan. CRISPR/Cas9 and TAL effector nuclease (TALEN) are widely used to quickly address genetic functions in Ciona. Our previously reported method of CRISPR/Cas9-mediated mutagenesis in this animal has inferior mutation rates compared to those of TALENs. We here describe an updated way to effectively mutate genes with CRISPR/Cas9 in Ciona. Although the construction of TALENs is much more laborious than that of CRISPR/Cas9, this technique is useful for tissue-specific knockouts that are not easy even by the optimized CRISPR/Cas9 method.


Assuntos
Ciona intestinalis , Ciona , Animais , Edição de Genes/métodos , Ciona/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/genética , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes
17.
Biol. Res ; 56: 10-10, 2023. ilus
Artigo em Inglês | LILACS | ID: biblio-1429911

RESUMO

BACKGROUND: The biological tube is a basal biology structure distributed in all multicellular animals, from worms to humans, and has diverse biological functions. Formation of tubular system is crucial for embryogenesis and adult metabolism. Ascidian Ciona notochord lumen is an excellent in vivo model for tubulogenesis. Exocytosis has been known to be essential for tubular lumen formation and expansion. The roles of endocytosis in tubular lumen expansion remain largely unclear. RESULTS: In this study, we first identified a dual specificity tyrosine-phosphorylation-regulated kinase 1 (DYRK1), the protein kinase, which was upregulated and required for ascidian notochord extracellular lumen expansion. We demonstrated that DYRK1 interacted with and phosphorylated one of the endocytic components endophilin at Ser263 that was essential for notochord lumen expansion. Moreover, through phosphoproteomic sequencing, we revealed that in addition to endophilin, the phosphorylation of other endocytic components was also regulated by DYRK1. The loss of function of DYRK1 disturbed endocytosis. Then, we demonstrated that clathrin-mediated endocytosis existed and was required for notochord lumen expansion. In the meantime, the results showed that the secretion of noto-chord cells is vigorous in the apical membrane. CONCLUSIONS: We found the co-existence of endocytosis and exocytosis activities in apical membrane during lumen formation and expansion in Ciona notochord. A novel signaling pathway is revealed that DYRK1 regulates the endocytosis by phosphorylation that is required for lumen expansion. Our finding thus indicates a dynamic balance between endocytosis and exocytosis is crucial to maintain apical membrane homeostasis that is essential for lumen growth and expansion in tubular organogenesis.


Assuntos
Humanos , Animais , Ciona intestinalis/metabolismo , Fosforilação , Desenvolvimento Embrionário , Morfogênese , Notocorda/metabolismo
18.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227591

RESUMO

Ventral tail bending, which is transient but pronounced, is found in many chordate embryos and constitutes an interesting model of how tissue interactions control embryo shape. Here, we identify one key upstream regulator of ventral tail bending in embryos of the ascidian Ciona. We show that during the early tailbud stages, ventral epidermal cells exhibit a boat-shaped morphology (boat cell) with a narrow apical surface where phosphorylated myosin light chain (pMLC) accumulates. We further show that interfering with the function of the BMP ligand Admp led to pMLC localizing to the basal instead of the apical side of ventral epidermal cells and a reduced number of boat cells. Finally, we show that cutting ventral epidermal midline cells at their apex using an ultraviolet laser relaxed ventral tail bending. Based on these results, we propose a previously unreported function for Admp in localizing pMLC to the apical side of ventral epidermal cells, which causes the tail to bend ventrally by resisting antero-posterior notochord extension at the ventral side of the tail.


Assuntos
Ciona intestinalis , Ciona , Animais , Ciona intestinalis/metabolismo , Ciona/metabolismo , Cadeias Leves de Miosina/metabolismo , Ligantes , Células Epidérmicas/metabolismo , Cauda/metabolismo
19.
Cell Tissue Res ; 390(2): 189-205, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36048302

RESUMO

Due to similarities in iodine concentrations and peroxidase activities, the thyroid in vertebrates is considered to originate from the endostyle of invertebrate chordates even though it is a glandular (mucus-producing) organ for aquatic suspension feeding. Among chordates with an endostyle, urochordates are useful evolutionary research models for the study of vertebrate traits. The ascidian Ciona intestinalis forms an endostyle with specific components of glandular- and thyroid-related elements, and molecular markers have been identified for these components. Since we previously examined a simple endostyle in the larvacean Oikopleura dioica, the expression of the thyroid-related transcription factor genes, Ciona Nkx2-1 and FoxE, was perturbed by TALEN-mediated gene knockout in the present study to elucidate the shared and/or divergent features of a complex ascidian endostyle. The knockout of Ciona Nkx2-1 and FoxE exerted different effects on the morphology of the developing endostyle. The knockout of Nkx2-1 eliminated the expression of both glandular and thyroidal differentiation marker genes, e.g., vWFL1, vWFL2, CiEnds1, TPO, and Duox, while that of FoxE eliminated the expression of the differentiation marker genes, TPO and CiEnds1. The supporting element-related expression of Pax2/5/8a, Pax2/5/8b, FoxQ1, and ß-tubulin persisted in the hypoplastic endostyles of Nkx2-1- and FoxE-knockout juveniles. Although the gene regulation of ascidian-specific CiEnds1 remains unclear, these results provide insights into the evolution of the vertebrate thyroid as well as the urochordate endostyle.


Assuntos
Ciona intestinalis , Animais , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Glândula Tireoide/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica , Vertebrados
20.
Front Endocrinol (Lausanne) ; 13: 858885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321341

RESUMO

Omics studies contribute to the elucidation of genomes and profiles of gene expression. In the ascidian Ciona intestinalis Type A (Ciona robusta), mass spectrometry (MS)-based peptidomic studies have detected numerous Ciona-specific (nonhomologous) neuropeptides as well as Ciona homologs of typical vertebrate neuropeptides and hypothalamic peptide hormones. Candidates for cognate G protein-coupled receptors (GPCRs) for these peptides have been found in the Ciona transcriptome by two ways. First, Ciona homologous GPCRs of vertebrate counterparts have been detected by sequence homology searches of cognate transcriptomes. Second, the transcriptome-derived GPCR candidates have been used for machine learning-based systematic prediction of interactions not only between Ciona homologous peptides and GPCRs but also between novel Ciona peptides and GPCRs. These data have ultimately led to experimental evidence for various Ciona peptide-GPCR interactions. Comparative transcriptomics between the wildtype and Ciona vasopressin (CiVP) gene-edited Ciona provide clues to the biological functions of CiVP in ovarian follicular development and whole body growth. Furthermore, the transcriptomes of follicles treated with peptides, such as Ciona tachykinin and cionin (a Ciona cholecystokinin homolog), have revealed key regulatory genes for Ciona follicle growth, maturation, and ovulation, eventually leading to the verification of essential and novel molecular mechanisms underlying these biological events. These findings indicate that omics studies, combined with artificial intelligence and single-cell technologies, pave the way for investigating in greater details the nervous, neuroendocrine, and endocrine systems of ascidians and the molecular and functional evolution and diversity of peptidergic regulatory networks throughout chordates.


Assuntos
Ciona intestinalis , Neuropeptídeos , Hormônios Peptídicos , Animais , Inteligência Artificial , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Feminino , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...